Sensor Networks based on Optical Waveguide Sensors

Dr. Kort Bremer
Hannover Centre of Optical Technologies (HOT)
Leibniz Universität Hannover
Hannover, Germany

Kort.Bremer@hot.uni-hannover.de
+49 511 762 17905

SENSORNETS 2018, Madeira, 22-24.01.2018
Introduction

Components of an optical waveguide sensor:

- Optical waveguide
- Light source & light detector
- Optical sensor element
Introduction

Applications:

- Structural Health Monitoring (SHM)
 - Civil engineering structures
 - Geothermal wells
 - Power transmission lines
 - Railways

- Point-of-Care Testing (POCT)
 - Biomarker detection

- Analytic
 - Environmental
 - Food chemistry
Content

- Optical waveguides
- Sensor concepts
- Multiplexing approaches
- Summary
Content

- Optical waveguides
- Sensor concepts
- Multiplexing approaches
- Summary
Optical waveguide

Principle of Operation

- Total internal reflection (TIR)
- Photonic Crystal
- Plasmonics
- Metamaterial
Optical waveguide

Background

- Total internal reflection (TIR)
- Requirement: \(n_{\text{clad}} < n_{\text{core}} \)
- Numerical aperture specifies angle of incident
 \[
 \text{NA} = \sqrt{n_{\text{core}}^2 - n_{\text{clad}}^2} = \sin(\theta_i) .
 \]
- Discrete angles of propagation = modes
 \[
 \beta_m = n_1 k_0 \cos \theta_m
 \]
- Number of waveguide modes
 \[
 M = \left\lceil 2d \frac{\sin \theta_c}{\lambda} \right\rceil = \left\lceil 2 \frac{d}{\lambda} \text{NA} \right\rceil
 \]

M. Rahlves, HOT, LUH
Optical waveguide

Background

- Attenuation
 - Impurities
 - Absorption
 - Rayleigh scattering

- Dispersion
 - Material dispersion
 - Chromatic dispersion
 - Polarization dispersion
 - Mode dispersion
Optical waveguide

Different waveguide cross-sections/geometries (exemplary)

Embedded

Strip

Photonic crystal

M. Rahlves, HOT, LUH
Optical waveguide

Photonic components (exemplary)

Passiv
- Waveguide
- Bend
- Splitter
- Spectral filter

Active
- Modulator (Phase/Amplitude)
- Optical switch
- Ring laser

M. Rahlves, HOT, LUH
Optical waveguide

Fabrication methods

- Optical fibers
 - Draw tower (Glass and polymer fibers)
 - Extruder (Polymer fibers)

- Integrated waveguides
 - Micro/Nanoreplication
 - Photolithography
 - Laser inscription
 - Printing

M. Rezem, HOT, LUH
Content

- Optical waveguides
- Sensor concepts
- Multiplexing approaches
- Summary
Sensors

Sensor concepts
- Intensity
- Polarisation
- Phase (Interferometric)
- Spectral
- Resonant
- Scattering

Application
- Physical quantities
 - Strain
 - Pressure
 - Shape
 - Temperature
- Chemical quantities
 - Absorption
 - Fluorescents
 - Refractive index (RI)
Sensor concepts – Intensity based

Intensity modulated sensors

- External perturbations modulate light intensity inside optical waveguide

- Displacement sensing:
 - Two optical waveguides in close proximity
 ⇒ Amount of light captured by the second fiber depends on the NA and distance d

- Pressure sensing:
 - Bending optical fiber by diaphragm
 - Optical fiber between two corrugated plates
 ⇒ Bending/Microbending introduces light losses
Sensor concepts – Intensity based

Intensity modulated sensors

- Light intensity of optical waveguide interacts with surrounding (absorption spectroscopy)

- Cavity based sensor:
 - Two optical waveguides separated by cavity
 ⇒ Light inside the cavity is absorbed by the surrounding medium

- Evanescent field:
 - Evanescent field of light inside the optical waveguide interacts with surrounding
 ⇒ Evanescent light is absorbed by the surrounding medium
Sensor concepts – Polarisation based

Polarization modulated sensors

- External perturbations induce birefringence
 - Change of the refractive index due to elasto-optic effect
 ⇒ Change of the light polarization state

- Magnetic field sensor (Faraday-effect)
 - Faraday-rotation of light is proportional to line integral of the magnetic field
 ⇒ Plane of polarization changes with applied current
Sensors concepts – Interferometry based

Mach-Zehnder interferometer (MZI)

- Splitting an optical waveguide into an object and reference arm
- Creating light interference by recombining both waveguide arms

⇒ Phase difference

\[\Delta \varphi = k \cdot \Delta n \cdot l_O \]

⇒ Light intensity modulation

\[I_{out} = I_R^2 + I_O^2 + 2 \sqrt{I_R I_O} \cdot \cos(\Delta \varphi) \]

M. Rahlves, HOT, LUH
Sensor concepts – Interferometry based

Fiber optic MZI sensor

- **Application:**
 Strain/Force sensing

- **Optical waveguide:**
 Single-mode fibers

- **Fabrication:**
 Fusion splicing of optical fibers and 3dB-couplers

- **Sensitivity:**
 0.0033 mm/N (± 1.4 %)
Sensor concepts – Interferometry based

Asymmetric optical waveguide MZI

- Application:
 Displacement sensing

- Optical waveguide:
 Single-mode strip waveguide

- Fabrication:
 Photolithography & Spin coating
 - Cladding: NOA61 (n = 1.54)
 - Core: SU-8 (n = 1.57)

- Sensitivity: 0.105 rad/µm
Sensor concepts – Interferometry based

Bimodal optical waveguide interferometer

- Applications:
 Point-of-care diagnostics

- Optical waveguide:
 Single-mode rib waveguide

- Fabrication:
 Photolithography
 – Layer 1: Silicon oxide (cladding)
 – Layer 2: Silicon nitride (core)
 – Layer 3: Silicon oxide (cladding)

- Sensitivity: $3.3 \cdot 10^{-7}$ RIU
Sensor concepts – Interferometry based

Fabry-Perot Interferometer (FPI)

- Two mirrors of reflectance R_1 and R_2 are separated by a cavity of length L

- Light interference due to optical path difference
 \[\Rightarrow \text{Phase difference} \]
 \[\Delta \varphi = 2 \cdot k \cdot n \cdot L \]
 \[\Rightarrow \text{Light intensity modulation} \]

\[
\frac{I_R}{I_0} = \frac{R_1 + R_2 + 2 \sqrt{R_1 R_2} \cos(\Delta \varphi)}{1 + R_1 R_2 + 2 \sqrt{R_1 R_2} \cos(\Delta \varphi)}
\]

\[
\frac{I_T}{I_0} = \frac{T_1 T_2}{1 + R_1 R_2 + 2 \sqrt{R_1 R_2} \cos(\Delta \varphi)}
\]
Sensor concepts – Interferometry based

Example: Fiber optic FPI sensor

- **Application:**
 - Pressure sensing

- **Optical Waveguide:**
 - Single-mode optical fiber

- **Fabrication:**
 - Photolithography & Spin Coating

- **Sensitivity:**
 - 1-2 mmHg (= approx. 1.3 mbar)
 - (Linear range: 0 – 125 mmHg)
Sensor concepts – Spectral based

Optical waveguides with gratings

- Periodic refractive index modulation of optical waveguide core
 - i. Counter-propagating coupling (Bragg wavelength)
 \[\lambda_B = 2 \ n_{\text{eff}} \ \Lambda \]
 - ii. Co-propagating coupling
 \[\lambda_R = (n_{\text{eff,Core}} - n_{\text{eff,Cladding}}) \ \Lambda \]

- \(\Lambda \) and \(n_{\text{eff}} \) are sensitive to external influences (strain, temperature and RI)

 \(\Rightarrow \) Shifting coupling wavelength
Sensor concepts – Spectral based

Fiber Bragg Grating (FBG)
- Application:
 Strain and temperature sensing
- Optical waveguide:
 Single mode optical fibers
- Fabrication techniques:
 - Point-by-point (fs-laser)
 - Phase mask (e.g. KrF excimer laser)
 - Mach-Zehnder Interferometer
- Sensitivity:
 (example Micron Optics os4100 and os3100)
 - 28.9 pm/˚C (os4100)
 - 1.4 pm/µε (os3100)
Sensor concepts – Spectral based

Fiber Bragg Grating (FBG)

- Application:
 Relative humidity (RH) sensing

- Optical waveguide:
 Single mode optical fiber

- Fabrication:
 - FBG:
 Phase mask and KrF excimer laser
 - Polyimide (PI) coating:
 Dip coating

- Sensitivity:
 0.01 nm/%RH
Sensor concepts – Spectral based

Long period grating (LPG)

- Application:
 Refractive index (RI) sensing

- Optical waveguide:
 Single mode optical fiber

- Fabrication:
 - Amplitude mask (e.g. KrF excimer laser)
 - Point-by-point
 (fs-Laser, CO$_2$-Laser, splicer, etc.)
 - Microbender
Sensor concepts – Resonance based

Ring Resonator

- Evanescent light coupling between waveguide and ring structure
- Circumference of ring must be an integer multiple of the light wavelength (constructive interference)
- Sensing of refractive index of the surrounding
- Characteristic parameters
 - Free spectral range
 \[\Delta \nu = \frac{c}{2\pi R} \]
 - Quality factor
 \[Q = \frac{\Delta \nu}{\delta \nu} \]
Sensor concepts – Resonance based

Surface Plasmon Resonance (SPR)

- Resonant oscillation of electrons at metal/dielectric interface stimulated by incident light

- Advantage:
 - Surface wave
 ⇒ Strong interaction with surrounding medium

- Investigation of biomolecule interaction
 - Label free
 - Real time
 - Quantitative
Sensor concepts – Resonance based

Fibre optic SPR sensor for Smartphones

- Application:
 Refractive index sensing

- Optical waveguide:
 Plastic cladded silica (PCS) multi-mode fiber

- Fabrication:
 - Silver coating of fiber core
 - 45° polishing fiber end-faces

- Sensitivity:
 \(5.96 \cdot 10^{-4} \text{ RIU/pixel}\)
Sensor concepts – Scattering based

Silica optical glass fibers

- Rayleigh scattering
 - Scattering due to density and composition fluctuations in the glass fiber
 - Elastic scattering
- Raman scattering
 - Molecular vibration of glass causes light to be scattered
 - Inelastic scattering
- Brillouin scattering
 - Light scattering from the collective acoustic oscillations of the glass
 - Inelastic scattering
Content

- Optical waveguides
- Sensor concepts
- Multiplexing approaches
- Summary
Multiplexing optical waveguide sensors

Single-Point

Quasi-distributed

Distributed

Interrogator

Interrogator

Interrogator
Multiplexing – Single-Point

Sensor multiplexing

- One light source and light detector per optical waveguide sensor

- Optical waveguide: Only acting as sensor element

- Multiplexing approaches
 - Optical:
 Space Division Multiplexing (SDM)
 Time Division Multiplexing (TDM)
 Wavelength Division Multiplexing (WDM)
 - Electrical:
 Wireless sensor networks, etc.
Multiplexing – Single-Point

Example ring resonator based sensor network

- Space and time division multiplexing

- Several ring resonators are spatially separated (SDM)

- Interrogating ring resonators successively using on interrogator (TDM)

- Application:
 - Point-of-Care (POC) Diagnostic
Multiplexing – Single-Point

Radio-over-Fiber (RoF) based multiplexing

- RoF: Electrical carrier signal is transmitted over optical fiber
- Optical fiber transmission link contains optical fiber sensor element
- Quantities measured are transmitted and evaluated off-site

Application:
- Structural Health Monitoring:
 Strain, temperature, humidity, etc.
- Process control:
 Refractive index, etc.
Multiplexing – Quasi-Distributed

Sensor multiplexing

- Several optical waveguide sensors per light source and light detector

- Optical waveguide: Optical transmission link and hosting discrete optical sensor element

- Multiplexing approaches:
 - Optical
 TDM, WDM, SDM
 - Electrical
 Wireless sensor networks
Multiplexing – Quasi-Distributed

Example FBG based sensor network

- Wavelength Division Multiplexing (WDM) and Time Division Multiplexing (TDM)
- Multiplexing of FBG by applying different Bragg wavelength (WDM)
- Pulsed laser and fiber loop (time delay) between FBG sensors with equal Bragg wavelength (TDM)

Application:
- Structural Health Monitoring (SHM) of sewerage tunnels (Humidity and tilt)

Bremer, HOT, LUH
Multiplexing – Quasi-Distributed

Example FBG based sensor network

- Wavelength Division Multiplexing (WDM) and Spatial Division Multiplexing (SDM)

- Applying multi-core optical fiber for spatial separation (SDM)

- Multiplexing of FBG by applying different Bragg wavelength (WDM)

- Application:
 - Shape sensing
Multiplexing – Quasi-Distributed

Example: Fiber optic FPI sensor

- Application:
 Pressure and refractive index sensing
 Pevec et al., Optics Letters 39(21), 2014

- Optical Waveguide:
 Single-mode optical fiber

- Fabrication:
 Splicing, polishing and etching

- Sensitivity:
 0.2 mbar and 2·10^{-5} RIU
Multiplexing – Quasi-Distributed

Fiber optic FPI and FBG sensor

- Application:
 Pressure and temperature sensing

- Optical waveguide:
 Single-mode fiber with FBG

- Fabrication:
 Splicing, polishing and etching

- Sensitivity:
 4.4 nm/kPa
 (temperature ≤ 400 °C)
Multiplexing – Distributed

Rayleigh scattering

- Elastic scattering of light by particles much smaller than the wavelength
- In silica fibers microscopic variations of density and refractive index cause Rayleigh scattering
- Energy losses $\sim \lambda^{-4}$
- Distributed sensing approaches:
 - Optical Time Domain Reflectometry (OTDR)
 - Optical Frequency Domain Reflectometry (OFDR)
Multiplexing – Distributed

Optical Time Domain Reflectometry (OTDR)

- Principle of operation
 - Coupling light pulse into optical fiber
 - Detecting reflected light due to Rayleigh scattering or e.g. interconnection and splice
 - Strength of returned light is measured as a function of time
 - Calculating the spatial attenuation profile

- Application examples:
 - Distributed acoustic sensing
 - Distributed crack detection of building structures
 - Distributed leakage detection
Multiplexing – Distributed

Optical Frequency Domain Reflectometry (OFDR)

- Principle of operation
 Soller *et al.*, Optics Express 13, 666 (2005)
 - Coupling light of a tunable laser into optical fiber
 - Detector contains interferometer
 - Detecting interference fringes
 - Calculating spatial “density” profile of fiber under test

- Applications examples:
 - Distributed strain and temperature sensing
 - Luna ODiSI-B:
 Sensor length: 10 m; Spatial resolution: 2.6 mm
Multiplexing – Distributed

Raman Scattering

- Inelastic scattering of light
- Molecular vibration causes incident light to be scattered
- Producing stokes and anti-stroke emissions about the exciting wavelength
- Determining temperature by comparing the amplitudes of the Stokes and Anti-Stroke emissions

⇒ Distributed temperature sensing
Multiplexing – Distributed

Raman Scattering

- Distributed temperature sensing

- Typical specifications:
 - Distance 30 km
 - Spatial resolution 5 cm to 4 m
 - Temperature sensitivity ± 0.1 K to 2 K

- Application examples:
 - Structural Health Monitoring (SHM)
 - Power transmission lines
 - Fire alarm system
 - Geothermal energy
 - Enhanced oil recovery
Multiplexing – Distributed

Brillouin Scattering

- Inelastic scattering of light
- Light scattering from the collective acoustic oscillations (acoustic phonons) of glass
- Maximum reflection when scattered light is in phase
- Temperature and strain modify the mean density and thus the velocity of sound

⇒ Distributed strain and temperature sensing
Multiplexing – Distributed

Brillouin Scattering

- Distributed strain and temperature sensing

Specifications (fibrisTerre fTB 2505):

- Distance 25 km
- Spatial resolution 0.5 m
- Strain and temperature resolution 2µε and 0.1 K

Application examples:

- Structural Health Monitoring (SHM)
 - Railways
 - Dikes
 - ...
Content

- Optical waveguides
- Sensor concepts
- Multiplexing approaches
- Summary
Summary

Optical waveguide sensors

+ Immune to EMI
+ Robust
+ Small in size
+ Remote operation

Sensor concepts

- **Classification**
 - Amplitude
 - Polarization
 - Phase
 - Spectral
 - Resonant
 - Scattering

- **Multiplexing**
 - Single-Point
 - Quasi-distributed
 - Distributed

Applications

- Structural Health Monitoring (SHM)
- Analytic
- Point-of-Care
Many thanks

Dr. Kort Bremer
Hannover Centre of Optical Technologies (HOT)
Leibniz Universität Hannover
Hannover, Germany

Kort.Bremer@hot.uni-hannover.de
+49 511 762 17905

SENSORNETS 2018, Madeira, 22-24.01.2018

24. January 2018